ROHS

LEADER TIME SRL

PRODUCT SPECIFICATION

16*2 Characters COB LCD MODULE MODEL: LT-1602F-806 Ver:1.0

< >> Finally Specification

CUSTOMER'S APPROVAL					
CUSTOMER:					
SIG	NATURE:	DATE:			

APPROVED	РМ	PD	PREPARED
ВҮ	REVIEWD	REVIEWD	Ву

Prepared By: LEADER TIME SRL

VIA MONS. PROSDOCIMI, 27 36042 BREGANZE (VI)

• This specification is subject to change without notice. Please contact LT or it's representative before designing your product based on this specification.

1/1

Revision Status

Version	Revise Date	Page	Content	Modified By
Ver 1.0	2011-11-17		First Issued	

Table of Contents

No. Contents Page	
1. FEATURES4	
2. MECHANICAL SPECIFICATIONS4	
3. ELECTRICAL SPECIFICATIONS4	
4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM6	
5. TIMING CHARACTERISTICS7	
6. COMMAND LIST9	
7. CHARACTER GENERATOR ROM10	
8. QUALITY SPECIFICATIONS11	
9. RELIABILITY16	
10. HANDLING PRECAUTION17	
11. OUTLINE DIMENSION18	

1. Features

The features of LCD are showed as follows

* Display mode : STN/ Blue/ Transmissive/ Negative

* Controller IC : ST7066U-0T(English-Russian)

* Display format : 16X2 Characters

* Interface Input Data : 4 bit or 8 bit MPU

* Driving Method : 1/16Duty, 1/5Bias

* Viewing Direction : 6 O'clock

* Backlight : LED/White(Edge)

2. MECHANICAL SPECIFICATIONS

Item	Specification	Unit
Module Size	80(W) x36(H) x10.7MAX(D)	mm
Viewing Area	64(W) x 16(H)	mm
Activity Display Area	56.21(W)x11.50(H)	mm
Character Font	5x8 Dots	-
Character Size	2.96(W)x5.56(H)	mm
Character Pitch	3.55(W)x5.94(H)	mm
Dot Size	0.56(W)x0.66(H)	mm

3. ELECTRICAL SPECIFICATIONS

3-1 ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

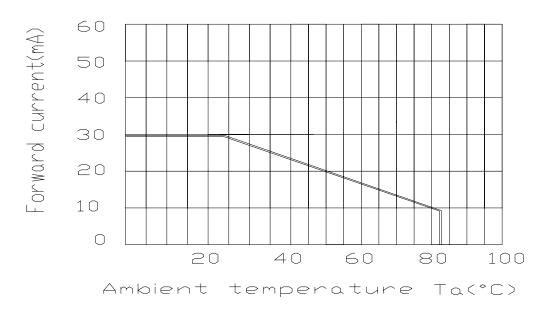
Item	Symbol	Min	Max	Unit
Supply Voltage For Logic	Vdd	0.3	7	V
Supply Voltage For LCD Drive	V_{LCD}	VDD-10	VDD+0.3	V
Input Voltage	Vin	-0.3	VDD+0.3	V
Operating Temp.	Тор	-20	+70	°C
Storage Temp.	Tst	-30	+80	°C

^{*.} NOTE: The response time will be extremely slow when the operating temperature is around -10 $^{\circ}$ C, and the back ground will become darker at high temperature operating.

3-2 ELECTICAL CHARACTERISTICS

Item		Symbol	Test Condition	Min.	Тур.	Max.	Unit
Logic supply Voltage		V _{DD} – V _{ss}		4.5	5	5.5	V
LCD Dri	ve	V _{OP} =VDD-V0	Ta = 25 °C VDD=5V ± 5%	ı	4.5	ı	V
Input Voltage	"H" Level	V _{IH}		0.7 VDD	1	Vdd	V
l in part of stange	"L" Level	V _{IL}		$VDD=5V \pm 5\%$	-0.3	-	0.6
Frame Frequency		f _{FLM}		ı	84.7	ı	Hz
Current Cons	umption	I _{DD}		-	1.3		mA

3-3 BACKLIGHT


3-3-1. Absolute Maximum Ratings

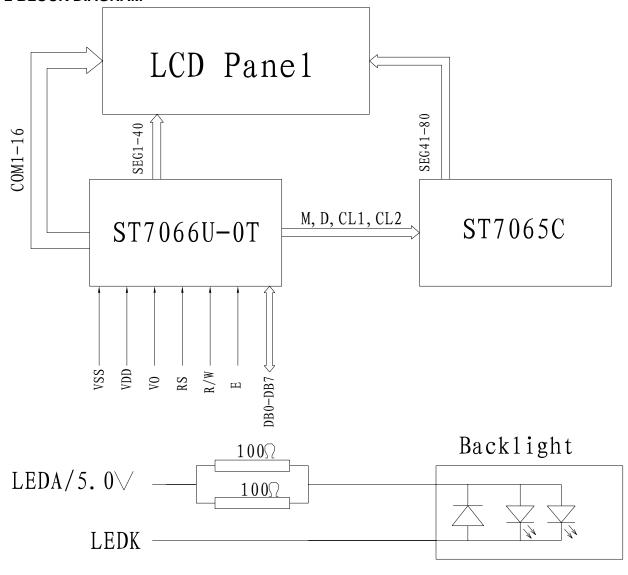
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Current	IF		-	30	40	mA
Reverse Voltage	VR	Ta = 25 °C	-	-	5	٧
Power Dissipation	PD		-		132	mW

3-3-2. Electrical-optical Characteristics

Item	Symbol	Condition	Mi	in.	Тур		Ma	ax.	Unit
Forward Voltage	VF		2	2.9		.1	3.3		V
Average Luminous Intensity	lv	Ta = 25 °C If=30mA	230		320				cd/m ²
Color Coordinates	-		X	Y 0.25	X	Y	X	Υ	

The brightness is measured without LCD panel

For operation above 25 °C, The lfm & Pd must be derated , the current derating is -0.36mA/ °C for DC drive and -0.86mA/ °C for Pulse drive ,the Power dissipation is -0.75 mW/ °C. The product working current must not more than the 60% of the lfm or Ifp according to the working temperature.


5/18 **Mo**

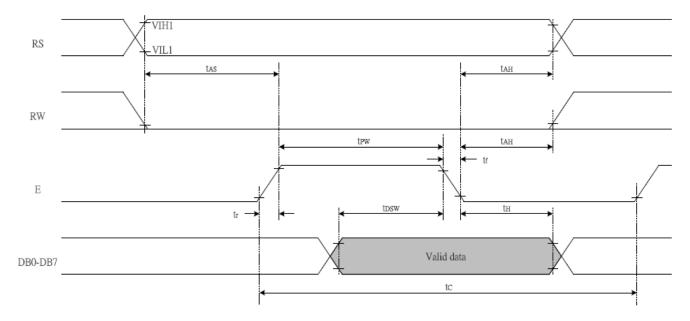
4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM

4-1 INTERFACE PIN FUNCTION DESCRIPTION

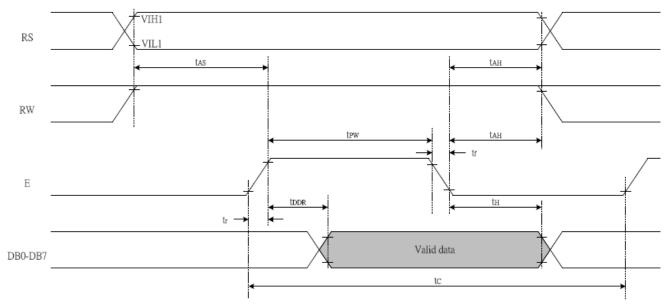
PIN NO.	SYMBOL	FUNCIONS
1	VSS	Ground
2	VDD	Supply voltage for logical circuit
3	V0	Supply voltage for LCD driving
4	RS	A signal for selecting registers. 1: Data Register (for read and write) 0: Instruction Register (for write)
5	R/W	A signal for selecting read or write actions.1: Read, 0: Write.
6	E	A enable signal for reading or writing data.
7-14	DB7~DB0	8 Bit Data Bus
15	LEDA	Backlight(+5V)
16	LEDK	Backlight(-)

4-2 BLOCK DIAGRAM

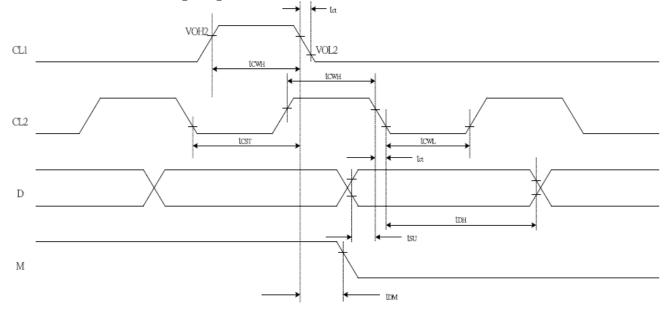
5. TIMING CHARACTERISTICS


5-1 Write mode

T _C	Enable Cycle Time	Pin E	1200	-	-	ns
T_PW	Enable Pulse Width	Pin E	140	-	-	ns
T_R,T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-	-	ns
T _{DSW}	Data Setup Time	Pins: DB0 - DB7	40	-	-	ns
T _H	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns


5-2 Read mode

T _C	Enable Cycle Time	Pin E	1200	-	-	ns
T _{PW}	Enable Pulse Width	Pin E	140	-	-	ns
T_R, T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-	-	ns
T _{DDR}	Data Setup Time	Pins: DB0 - DB7	-	-	100	ns
T _H	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns


5-3 Write mode timing diagram

5-4 Read mode timing diagram

5 – 5 Interface mode timing diagram

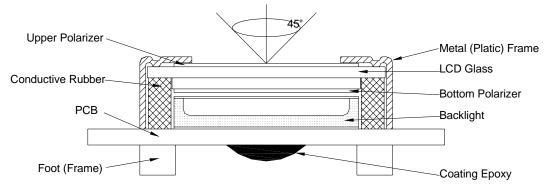
6. COMMAND LIST

Instruction Table:

instruction rap				Inst	ructi	on (Code	,				Description
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time (270KHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC	1.52 ms
Return Home	0	0	0	0	0	0	0	0	1	х	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	s	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	37 us
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1:entire display on C=1:cursor on B=1:cursor position on	37 us
Cursor or Display Shift	0	0	0	0	0	1	s/c	R/L	х	х	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	37 us
Function Set	0	0	0	0	1	DL	N	F	х	х	DL:interface data is 8/4 bits N:number of line is 2/1 F:font size is 5x11/5x8	37 us
Set CGRAM address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	37 us
Set DDRAM address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	37 us
Read Busy flag and address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 us
Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM)	37 us
Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM)	37 us

Note:

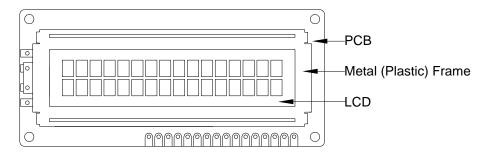
Be sure the ST7066U is not in the busy state (BF = 0) before sending an instruction from the MPU to the ST7066U. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to Instruction Table for the list of each instruction execution time.

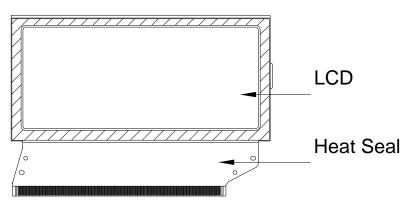

7. CHARACTER GENERATOR ROM

NO.7066-0T

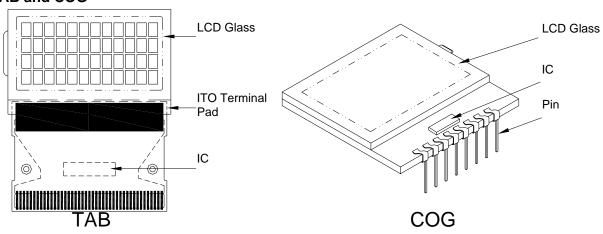
67-64 63-60	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)															
0001	(2)															
0010	(3)															
0011	(4)															
0100	(5)															
0101	(6)															
0110	7)															
0111	(8)															
1000	(1)															
1001	(2)															
1010	(3)															
1011	(4)															
1100	(6)															
1101	(6)															
1110	7)				###											
1111	(8)															

8. QUALITY SPECIFICATIONS


- 8 1. LCM Appearance and Electric inspection Condition
- 1. Inspection will be done by placing LCM 30cm away from inspector's eyeballs under normal illumination.


2. View Angle: with in 45° around perpendicular line.

8-2. Definition


1. COB

2. Heat Seal

3. TAB and COG

8-3. Sampling Plan and Acceptance

1. Sampling Plan

MIL - STD - 105E (||) ordinary single inspection is used.

2.Acceptance

Major defect: AQL = 0.65%Minor defect: AQL = 1.5%

8-4. Criteria

1.COB

Defect	Inspection Item	Inspection Standards	
Major	PCB copper flakes peeling off	Any copper flake in viewing Area should be greater than 1.0mm ²	Reject
Major	Height of coating epoxy	Exceed the dimension of drawing	Reject
Major	Void or hole of coating epoxy	Expose bonding wire or IC	Reject
Major	PCB cutting defect	Exceed the dimension of drawing	Reject

2.SMT

Defect	Inspection Item	Inspection Standa	ards
Minor	Component marking not readable		Reject
Minor	Component height	Exceed the dimension Of drawing	Reject
Major	Component solder defect (missing, extra, wrong component or wrong orientation		Reject
Minor	Component position shift component soldering pad X D Y	X < 3/4Z Y > 1/3D	Reject Reject
Minor	Component tilt component soldering pad	Y > 1/3D	Reject
Minor	Insufficient solder component PAD PCB	θ ≤ 20°	Reject

3. Metal (Plastic) Frame

Defect	Inspection Item	Inspection Standards					
Major	Crack / breakage	Any	Anywhere				
		W	L	Acceptable of Scratch			
		w<0.1mm	Any	Ignore			
		0.1 <u><</u> w<0.2mm	L <u><</u> 5.0mm	2			
Minor	Frame Scratch	0.2 <u><</u> w<0.3mm	L <u><</u> 3.0mm	1			
		w <u>></u> 0.3mm	Any	0			
			reater than 5mm. on the back sid ignored .	e of frame (no			
				Acceptable of Dents / Pricks			
		Φ<	2				
	Frame Dent , Prick	1.0<	1				
Minor	$\Phi = \frac{L + W}{2}$	1.5r	0				
	2	Note: 1. Above criteria applicable to any two dents / pricks with distance greater than 5mm 2. Dent / prick on the back side of frame (not visible) can be ignored					
Minor	Frame Deformation	Excee	Exceed the dimension of drawing				
Minor	Metal Frame Oxidation		Any rust				

4. Flexible Film Connector (FFC)

4. Flexible Film Connector (FFC)								
Defect	Insp	ection Item	Inspection Standa	rds				
Minor	Tilted soldering		Tilted soldering Within the angle +5°		Acceptable			
Minor	Uneven s	older joint /bump		Reject				
			Expose the conductive line	Reject				
Minor	Hole	$\Phi = \frac{L + W}{2}$	Ф > 1.0mm	Reject				
Minor	Position shift		Y > 1/3D	Reject				
IVIIIIOI	-\rac{1}{\times_1}	- 	X > 1/2Z	Reject				

5. Screw

Defect Inspection Item		Inspection Standards			
Major	Screw missing/loosen		Reject		
Minor	Screw oxidation	Any rust	Reject		
Minor	Screw deformation	Difficult to accept screw driver	Reject		

6. Heatseal . TCP . FPC

Defect	Inspection Item	Inspection Standards		
Major	Scratch expose conductive layer		Reject	
Minor	HS Hole $\Phi = \frac{L + W}{2}$	⊕> 0.5mm	Reject	
Major	Adhesion strength	Less than the specification	Reject	
Minor	Position shift	Y > 1/3D	Reject	
Minor	T X	X > 1/2Z	Reject	
Major	Conductive line break		Reject	

7. LED Backing Protective Film and Others

Defect	Inspection Item	Inspection Standards					
		Acceptable number of units					
		Ф ≤ 0.10mm					
		0.10<⊕ <u><</u> 0.15mm	2				
Minor	LED dirty, prick	0.15<⊕ <u><</u> 0.2mm	1				
		Φ>0.2mm	0				
		The distance between any two spots should be ≥ Any spot/dot/void outside of viewing area is accept					
Minor	Protective film tilt	Not fully cover LCD					
Major	COG coating	Not fully cover ITO circuit	Reject				

8. Electric Inspection

<u></u>	n Electric melectricm								
Defect	Inspection Item	m Inspection Standards							
Major	Short		Reject						
Major	Open		Reject						

9. Inspection Specification of LCD

Defect	Insp	ect Item	Inspection Standards							
		* Glass Scratch	W			0.03	0.0			V>0.05
		* Polarizer Scratch	L		L٠	<5		L<3		Any
Minor	Linear Defect	* Fiber and Linear	ACC. NO.		1			1		Reject
		material	Note	L is the	e ler	ngth and W	is th	e width of	the de	efect
		* Foreign material		Φ <u><</u> 0		0.1<⊕ <u><</u> 0	.15 ().15<⊕ <u><</u> 0.	.2	⊕>0.2
	Black Spot and			3EA 100m	m ²	2		1		0
Minor	Polarizer Pricked	and glass * Polarizer hole or protuberance by external force	note	Φ is the average diameter of the defect. Distance between two defects > 10mm.						
		* Unobvious	-		Φ <u><</u> (0.3	0.3	<⊕ <u><</u> 0.5	0.	5< ⊕
	White Spot	transparant foreign material between		3EA	/ 10	00mm ²		1		0
Minor	and Bubble in polarizer	glass and glass or glass and polarizer * Air protuberance between polarizer and glass			Φ is the average diameter of the defect. Distance between two defects > 10mm.					
				Φ <u><</u> 0.		0.10<⊕ <u><</u>	0.20	0.20<⊕ <u><</u> 0.25		Φ>0.25
		w the second sec	ACC. NO.	3EA 100mi	/ m²	2		1		0
Minor	Segment Defect	-W-		W is m	ore	than 1/2 s	egme	ent width		Reject
	26,660		Note	$\Phi = \frac{L + W}{2}$ Distance between two			o def	ect is 10m	m	
			Φ	Φ < 0.	10	0.10<⊕≤	0.20	0.20<⊕≤	0.25	Φ>0.25
	Protuberant	w L	W	Glue)	W <u><</u> 1/2 Seg W <u><</u> 0.2		W <u><</u> 1/2 Seg W <u><</u> 0.2		Ignore
Minor	Segment	$\Phi = (L + W)/2$	ACC. NO.	3EA 100mi	3EA / 100mm ² 2			1		0
			1. Seg	ment						
			E	3	B <u><</u>	0.4mm	0.4 <e< td=""><td>3<u><</u>1.0mm</td><td>B>1</td><td>1.0mm</td></e<>	3 <u><</u> 1.0mm	B>1	1.0mm
Minor	Assembly		B-			A<1/2B		A<0.2		<0.25
	Mis-alignment					Acc	Acceptable Acceptable			
			2. Dot Matrix							
								Reject		
Minor	Stain on LCD Panel Surface		Accept when stains can be wiped lightly with a soft clot or a similar one. Otherwise, judged according to the above items: "Black spot" and "White Spot"							

9. RELIABILITY

NO.	Item	Condition	Criterion		
1	High Temperature Operating	70°C, 96Hrs			
2	Low Temperature Operating	-20℃, 96Hrs			
3	High Humidity	60°C, 90%RH, 96Hrs			
4	High Temperature Storage	80°C, 96Hrs			
5	Low Temperature Storage	-30℃, 96Hrs	No defect in cosmetic and operational function		
		Random wave	on allowable.		
6	Vibration	10 ~ 100Hz	Total current Consumption should be below doub		
0	Vibration	Acceleration: 2g	le of initial value.		
		2 Hrs per direction(X,Y,Z)			
		-20°C to 25°C to 70°C			
7	Thermal Shock	Thermal Shock (60Min) (5Min) (60Min)			
		16Cycles			
	ESD Tooting	Contract Discharge Voltage: +1 ~ 5kV and -1 ~ -5kV	There will be discharged ten times		
8	ESD Testing	Air Discharge Voltage: +1 ~ 8kV and -1 ~ -8kV	at every discharging voltage cycle. The voltage gap is 1kV.		

Note: 1) Above conditions are suitable for our company standard products.

2) For restrict products, the test conditions listed as above must be revised.

10. HANDLING PRECAUTION

(1) Mounting Method

The panel of the LCD Module consists of two thin glass plates with polarizers which easily get damaged since the Module is fixed by utilizing fitting holes in the printed circuit board. Extreme care should be taken when handling the LCD Modules.

(2) Caution of LCD handling & cleaning

When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly.

- Isopropyl alcohol
- Ethyl alcohol
- Trichloro trifloro thane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent:

- Water
- Ketone
- Aromatics

(3) Caution against static charge

The LCD Module use C-MOS LSI drivers, so we recommend that you connect any unused input terminal to VDD or VSS, do not input any signals before power is turned on. And ground your body, Work/assembly table. And assembly equipment to protect against static electricity.

(4) Packaging

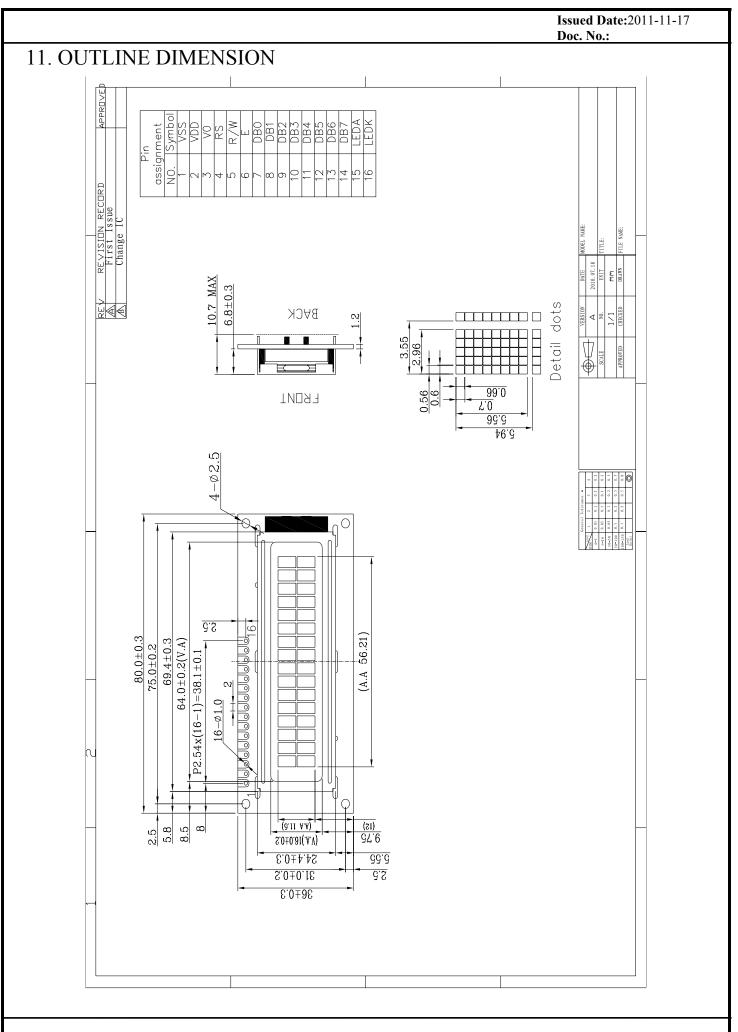
- Modules use LCD elements, and must be treated as such. Avoid intense shock and falls from a height.
- To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high temperature/humidity.

(5) Caution for operation

- It is indispensable to drive LCD's within the specified voltage limit since the higher voltage than the limit shorten LCD life. An electrochemical reaction due to direct current causes LCD deterioration, Avoid the use of direct current drive.
- Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's. Which will come back in the specified operating temperature range.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.

Usage under the relative condition of 40°C, 50%RH or less is required.

(6) Storage


In the case of storing for a long period of time (for instance.) For years) for the purpose or replacement use, The following ways are recommended.

- Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping temperature in the specified storage temperature range.
- Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)

(7) Safety

- It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol. Which should be burned up later.

When any liquid crystal leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.

